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Medical Knowledge Graphs
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Collaborations
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Abstract This chapter introduces a framework that is based on a novel graph-based
text representation method and combines graph-based feature selection, text catego-
rization and link prediction to advance the discovery of future research collaborations.
Our approach integrates into a single knowledge graph both structured and unstruc-
tured textual data through a novel representation of multiple scientific documents.
The Neo4j graph database is used for the representation of the proposed scien-
tific knowledge graph. For the implementation of our approach, we use the Python
programming language and the scikit-learn machine learning library. We assess our
approach against classical link prediction algorithms using accuracy, recall and preci-
sion as our performancemetrics.Our experiments achieve state-of-the-art accuracy in
the task of predicting future research collaborations. The experimentations reported
in this chapter use the COVID-19 Open Research Dataset.

Keywords Link prediction · Text categorization · Feature selection · Knowledge
graphs · Natural language processing · Document representation

16.1 Introduction

In recent years, we have witnessed an increase in the adoption of graph-based
approaches for predicting future research collaborations by utilizing tasks such as link
prediction, feature selection and text categorization [1, 2]. In these approaches, graph-
based text representations are being used as ameans to select important features from
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all documents and build communities or clusters of similar documents, whereas a
collaboration between two researchers is generally denoted by a scientific article
written by them [3].

Graph-based approaches (particularly those concerning knowledge graphs) build
on concepts and methods from graph theory (e.g. node centrality, link prediction
and node similarity measures) to discover hidden knowledge from the structural
characteristics of the corresponding research graph [4]. However, despite their broad
adoption, existing graph-based approaches aiming to discover future research collab-
orations utilize only the structural characteristics of a research graph [5]. In cases
where unstructured textual data is available (e.g. graph nodes that correspond to
scientific articles), existing approaches are incapable of simultaneously exploiting
both the structural and the textual information of the graph.

To remedy the above weakness, this chapter proposes the construction and utiliza-
tion of a scientific knowledge graph where structured and unstructured data co-exist
(e.g. document, author and word nodes). Building on our previous work, we repre-
sent the documents of a scientific graph as a graph-of-docs [6–8]. This enables us to
exploit both the structural and textual characteristics of a research graph, and accord-
ingly build a framework incorporating algorithms for tasks such as link prediction
to discover future collaborations, text categorization to pair similar documents in
communities studying a certain topic, and feature selection to identify the key features
of the documents under consideration. The proposed approach uses the Neo4j graph
database (https://neo4j.com) for the representation of the knowledge graph. For the
implementation of our experiments, we use the Python programming language and
the scikit-learn machine learning (ML) library (https://scikit-learn.org).

To evaluate the outcome of this chapter, we assess the proposed framework against
different combinations of link prediction measures, which utilize only the structural
information of a research graph. Our performance metrics include the accuracy, the
precision, and the recall for each of the MLmodels considered. For our experiments,
we use the COVID-19 Open Research Dataset (CORD-19). To examine whether
our approach is affected by the size of the dataset (e.g. overfits or underfits), we
extract and consider nine different well-balanced datasets. The experimental results
demonstrate state-of-the-art accuracy in the link prediction problem. The remainder
of the chapter is organized as follows: Sect. 16.2 introduces background issues and
comments on related work; the proposed framework is thoroughly presented and
evaluated in Sects. 16.3 and 16.4, respectively; finally, concluding remarks and future
work directions are outlined in Sect. 16.5.

16.2 Background Issues

For the discovery of future research collaborations, the proposed approach exploits a
combination of natural language processing (NLP), graph-based text representation,
graph theory and knowledge graph techniques.

https://neo4j.com
https://scikit-learn.org
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16.2.1 Graph Measures and Indices

Diverse graph measures and indices to capture knowledge related to the structural
characteristics of a graph have been proposed in the literature [9]. Below, wemention
a small subset of them, which is used in our approach. We define |S| as the number
of elements found in a set S.

The Common Neighbors measure, denoted by CN (a, b), calculates the number
of nodes that are common neighbors for a pair of nodes a and b [10]. It is defined as:

CN (a, b) = |�(a) ∩ �(b)| (16.1)

where Γ (x) denotes the set of neighbors of a node x.
The Total Neighbors measure, denoted by TN (a, b), takes into consideration all

neighbors of a pair of nodes a and b (and not only the common ones as is the case in
the previous measure). It is defined as:

T N (a, b) = |�(a) ∪ �(b)| (16.2)

ThePreferential Attachmentmeasure, denoted byPA (a, b), calculates the product
of the in-degree values of a pair of nodes a and b [11]. This measure assumes that two
highly connected nodes are far more likely to be connected in the future, in contrast
to two loosely connected ones. This measure is defined as:

PA(a, b) = |�(a)|∗ |�(b)| (16.3)

The Adamic Adar measure, denoted by AA (a, b), calculates the sum of the inverse
logarithm of the degree of the set of neighbors shared by a pair of nodes a and b [12].
This measure assumes that nodes of a low degree are more likely to be influential in
the future. It is defined as:

AA(a, b) =
∑

c∈�(a)∩�(b)

(
1

log|�(c)|
)

(16.4)

Finally, the Jaccard Coefficient index, denoted by J (a, b), resembles the CN
measure mentioned above; however, it differs slightly in that, for a pair of nodes a
and b, it considers the amount of the intersection of their neighbor nodes over the
union of them [13]. It is defined as:

J (a, b) = |�(a) ∩ �(b)|
|�(a) ∪ �(b)| (16.5)
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16.2.2 Graph-Based Text Representations

The graph-of-words textual representation [14] represents each document of a corpus
as a single graph. In particular, each graph node corresponds to a unique word of
a document and each edge denotes the co-occurrence between two words within a
sliding window of text. Rousseau et al. [15] suggest that a window size of four seems
to be the most appropriate value, in that it does not sacrifice either the performance
or the accuracy of the ML models. Compared to the bag-of-words representation, it
enables a more sophisticated feature engineering process due to the fact that it takes
into consideration the co-occurrence between the terms. In any case, the limitations of
the graph-of-words text representation are that: (i) it is unable to assess the importance
of a word for a whole set of documents; (ii) it does not allow for representingmultiple
documents in a single graph, and (iii) it is not easily expandable to support more
complicated data architectures.

16.2.3 Graph-Based Feature Selection

Various promising graph-based feature selection approaches have been already
proposed in the literature. Rousseau et al. [15] proposed several combinations and
arrangements of popular frequent subgraph mining techniques, such as gSpan [16],
Gaston [17] and gBoost [18], to achieve unsupervised feature selection by utilizing
the k-core subgraph. Especially, in order to get a performance boost, Rousseau and his
colleagues build on the concept of a k-core subgraph to compress themost dense parts
of the graph representation. Their experimental results indicate a significant increase
in accuracy compared to common classification approaches. Henni et al. [19] applied
centrality algorithms, such as PageRank, to calculate a centrality measure of each
graph feature and accordingly select the most important ones. Fakhraei et al. [20]
build on combinations of graph algorithms that belong in different classes, aiming
to track strongly connected graph features. Such algorithms include the Louvain
community detection algorithm and the PageRank centrality algorithm to discover
influential nodes and other user defined graph measures.

Other approaches rely on recursively filtering out features in terms of reducing
the existing feature space. For instance, one of them re-applies PageRank to find
the most influential features in the feature space [21]. These approaches use graph-
connected features to include contextual information, as modelled implicitly by a
graph structure, using edges that describe connections among real data. They aim
to reduce ambiguity in feature selection and improve accuracy in traditional ML
methods.
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16.2.4 Graph-Based Text Categorization

Many interesting approaches have been also proposed in the literature for the graph-
based text categorization process. Depending on their underlying methods, these can
be classified into two basic categories: (i) these that utilize frequent subgraph mining
for feature extraction, and (ii) those that build on graph kernels. Well known frequent
subgraph mining techniques were mentioned in the previous subsection. Rousseau
et al. [15] propose several combinations of thesemethods, ranging fromunsupervised
feature mining using gSpan to unsupervised feature selection by utilizing the k-core
subgraph.

Nikolentzos et al. [22] make a significant contribution to previous approaches,
with their work on ‘graph kernel’—based algorithms. A graph kernel is a measure
that calculates the similarity between two graphs. For instance, a document simi-
larity algorithm based on shortest path graph kernels has been proposed; common
ML classifiers such as support vector machines (SVM) and k-nearest neighbors (k-
NN) can use the results of this algorithm as a distance measure. Their experimental
results indicate that classifiers that utilize graph kernel algorithms outperform several
classical approaches. Siglidis et al. [23] collect several popular graph kernel libraries
into a single unified framework, namely the GraKeL Python library, and provide a
user-friendly API (similar to that of scikit-learn) that enables one to augment the
library with new and custom graph kernels.

16.2.5 Graph-Based Link Prediction

As far as the discovery of future research collaborations using link prediction tech-
niques is concerned, works that are closer to our approach are those of Liben-Nowell
and Kleinberg [24–29]. Specifically, Liben-Nowell and Kleinberg [24] rely only on
network topology aspects of a co-authors network, and the proximity of a pair of
nodes to calculate the probability of future research collaborations between them.
Sun et al. [27] propose the use of structural properties to predict future research
collaborations in heterogeneous bibliographic networks, where multiple types of
nodes (e.g. venues, topics, papers, authors) and edges (e.g. publish, mention, write,
cite, contain) co-exist. They exploit the relationships between the papers to improve
the accuracy of their link prediction algorithm.

Guns and Rousseau [25] recommend potential research collaborations using link
prediction techniques and a random forest classifier. For each pair of nodes of a
co-authorship network, they calculate a variety of topology-based measures such
as Adamic Adar and Common Neighbors, and they combine them with location-
based characteristics related to the authors. Hence, they propose future collaborations
based on the location of the authors and their position on the co-authorship network.
Huang et al. [26] construct a co-authorship network for the Computer Science field
that represents research collaborations from 1980 to 2005. They rely on classical
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statistical techniques and graph theory algorithms to describe the properties of the
constructed co-authorship network. The dataset used contains 451,305 papers from
283,174 authors.

Yu et al. [28] utilize link prediction algorithms to discover future research collab-
orations in medical co-authorship networks. For a given author, they attempt to iden-
tify potential collaborators that complement her as far as her skillset is concerned.
They calculate common topological and structural measures for each pair of author
nodes, including Adamic Adar, Common Neighbors and Preferential Attachment.
ML models are used for the identification of possible future collaborations.

Chuan et al. [29] propose a new content similarity algorithm for link prediction in
co-authorship networks, namely LDAcosin. This algorithm initially performs topic
modelling using the LDA model to produce a feature vector for each paper, and
then calculates the similarity between authors by using cosine similarity between the
produced vectors.

For a broader link prediction perspective, we refer to Fire et al. [30], Julian and
Lu [31] and Panagopoulos et al. [32], these works describe approaches concerning
the task of predicting possible relationship types between nodes (e.g. friendships in
social networks).

16.3 The Proposed Framework

In this section, we propose a framework that builds on the concept of the graph-
of-docs to support and eventually augment the quality of predicting future research
collaborations.

16.3.1 Graph-Based Text Representation

As mentioned in the previous section, to remedy the shortcomings of the graph-of-
words representation, Giarelis et al. [6–8] have proposed the graph-of-docs repre-
sentation, which depicts and elaborates multiple textual documents as a single graph.
This representation enables us to store different types of nodes and edges in a graph,
ranging from node types such as ‘document’ and ‘word’ to edge types such
as ‘is_similar’, ‘connects’ and ‘includes’. In addition, it allows us to
explore the significance of a term not just in terms of a single document but rather
acrossmany documents.Moreover, the proposed representation permits us to abstract
each graph of words by using a document node. Finally, it supports relationship edges
between documents, thus enabling the calculation of important metrics as far as the
documents are concerned (e.g., spotting communities of similar documents, recog-
nizing important documentwhich are representative for the corpus, cluster documents
that share the same topic in communities without any prior knowledge, etc.).
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The graph-of-docs representation builds a directed dense graph which maintains
all the connections between the documents and the words of a corpus. Each unique
document node connects to all the unique word nodes that it includes, using the
‘includes’ edge type; the ‘connects’ edge types are applied to link two
word nodes and designate their co-occurrence within a specific sliding text window.
In the end, an ‘is_similar’ edge type is used to connect a pair of document
nodes and indicate their contextual similarity; this is done by utilizing the Jaccard
similarity index, since it deals only with the percentage of common words, ignoring
their document frequency.

The above transformation of a set of documents into a graph model enables the
reduction of various NLP problems to well-studied graph problems, which can be
tackled by employing techniques from graph theory [15]. These techniques inves-
tigate important graph properties, such as node centrality and frequent subgraphs,
which are applied respectively to extractmeaningful keywords and to discover similar
documents.

In this chapter, we utilize the graph-of-docs model to represent the textual data
of a knowledge graph. We argue that the accuracy of common NLP and text mining
tasks can be improved by adopting the proposed graph-of-docs representation. The
proposed representation: (i) enables the investigation of the importance of a term
into a whole corpus of documents, and (ii) allows multiple node types to co-exist in
the same graph, thus being easily expandable and adaptable to more complex data.

16.3.2 Graph-Based Feature Selection

The proposed graph-based feature selection process follows four steps. Firstly, a
document similarity subgraph is created, based on the assumption that subgraphs
of the entire graph-of-docs graph describing similar documents have common word
nodes and similar structural characteristics. This enables us to calculate the similarity
between two documents by utilizing classical similarity measures. The similarity
subgraph consists of document nodes and edges of the ‘is_similar’ type, which
store the similarity score between two nodes.

Secondly, by exploiting the document similarity subgraph, we identify commu-
nities (groups) of contextually similar documents using the ‘score’ property of
the ‘is_similar’ type edges as a distance value. This is made possible by the
use of the Louvain community detection algorithm [33].

Thirdly, given the fact that documents belonging to the same community are
contextually similar, we presume that it is also very likely that they share common
terms.Aiming to retrieve the top-N most important terms for all documents belonging
to the same community, our algorithm ranks themfirstly by their document frequency
and secondly by their PageRank score, both in descending order.

Finally, we perform feature selection for the whole document corpus by merging
the top-N features of each community. This reduces the number of the candidate
features, which results in accelerating the feature selection process, thus mitigating
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the effects of the ‘curse-of-dimensionality’ phenomenon and enabling the training
of more reliable ML models.

16.3.3 Graph-Based Text Categorization

Generally speaking, subgraphs extracted from similar documents share common
word nodes as well as similar structural characteristics. This allows us to measure
the similarity between two documents either by using classical datamining similarity
measures, such as the Jaccard or cosine similarity, or by utilizing frequent subgraph
mining techniques (see Sect. 16.2.3). In our current approach, we construct a simi-
larity subgraph that contains document nodes and edges of type ‘is_similar’.
It is evident that the creation of that subgraph is not practical in approaches that
consider each document individually.

In the aforementioned subgraph, we group documents in contextually similar
communities, by considering as a distance value the ‘score’ property of the
‘is_similar’ edge types. A plethora of community detection algorithms can be
found in the literature, including Louvain [33], Label Propagation [34] and Weakly
Connected Components (Monge and Elka [35], an in-depth review of these algo-
rithms can be found in Fortunato [36] and Yang et al. [37]. Since each graph commu-
nity contains contextually similar documents, there is an increased likelihood for
each community to contain documents that belong to the same class, as identified by
a text categorization task. Hence, we can easily deduce the document class either by
utilizing themost frequent class in its community or by executing a nearest neighbors’
algorithm (such as the k-nearest neighbors).

16.3.4 Graph-Based Link Prediction

The CORD-19 dataset used in our work consists of multiple textual documents
(i.e. scientific papers) and a metadata file (in.csv format) that contains information
about the papers themselves along with their authors and affiliations. The proposed
ML pipeline for predicting future collaborations includes the following five steps
(Fig. 16.1):

Data preprocessing. In this initial step, we preprocess the plain text of the abstract
of each paper. We start by tokenizing the data in a list of terms. From this list, we
first remove the English stop words; the remaining significant terms are then cleaned
by unnecessary Unicode symbols, punctuation and leading whitespace.

The graph-of-docs representation. In this step, we use the list of significant
terms obtained from the previous one. We start by creating each term in the graph
database, without adding duplicate terms. Each term is connected to the next one in
the list as long as it is part of the same sentence.
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Fig. 16.1 The proposed ML pipeline for discovering future research collaborations

The sliding window size, by which we connect the terms, is in the range [2, 8];
however, as indicated by diverse experimental results in the literature, a window size
of 4 seems ideal [15]. The connection between the terms is created in the database
as an undirected edge connecting all terms in the specified window. This edge also
contains a number, namely the co-occurrence score, which measures the number of
co-appearances of a pair of terms in each iteration step of the text parsing process.
Common edges between texts are aggregated in terms of their co-occurrence score.
This implies that no duplicate edges are introduced in our graph, which reduces the
memory footprint.

As long as the graph-of-words representation (for a single document) has been
created, we then create a node in the database representing the paper itself, which is
directly connected to all of its terms. This is crucial, since it allows us to compare
papers given their common words.

Knowledge graph. In this step, we utilize the metadata of each paper. We start
by creating nodes for all authors and their affiliations. Then, we link authors with
their affiliations and the papers they have authored by using different types of edges.
Moreover, to discover authors of similar papers who work on the same field but
have not collaborated so far. This is accomplished by comparing the words of papers
between a pair of authors of the papers under consideration. The aforementioned
connection also allows us to generate a new knowledge subgraph, called the co-
authorship graph, which connects all authors who have already collaborated in the
authorship of papers, with an edge indicating the year of their first collaboration.

Feature extraction. Our goal in this step is to extract features for classification
purposes. For each pair of authors, we apply various link prediction measures, which
result in a numerical score (i.e. a positive number that indicates the likelihood of a
future collaboration, or zero if there is no such likelihood). These measures exploit
the structural characteristics of the co-authorship graph. The final list of features
contains a pair of authors’ ids and the value of each measure, which feed the final
step of the pipeline.

Link prediction. In this step, we utilize the aforementioned features as input to a
classification process. This process classifies each pair of authors by assigning a label
‘1’ if the authors may work together in the future, or a label ‘0’ in the opposite
case. In other words, the link prediction problem is reduced to a binary classification
problem, aiming to discover future research collaborations.
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Fig. 16.2 The data schema of the scientific knowledge graph

Our knowledge graph allows diverse types of entities and relationships to co-exist
in a the same graph data schema, including entity nodeswith types such as‘Paper’,
‘Author’, ‘Laboratory’, ‘Location’, ‘Institution’ and ‘Word’,
and relationship edgeswith types such as‘is_similar’,‘cites’,‘writes’,
‘includes’, ‘connects’, ‘co_authors’ and ‘affiliates_with’
(see Fig. 16.2).

A ‘Paper’ entity represents a scientific paper or document. An ‘Author’
entity represents an author of a scientific paper or document. The ‘Laboratory’
entity represents the laboratory of an author. The ‘Location’ entity represents
the location of a laboratory. The ‘Institution’ entity represents the institution
of an author. Each ‘Word’ entity corresponds to a unique word of a scientific paper
or document.

An ‘includes’ relationship connects a ‘Word’ with a ‘Paper’ entity. It
marks the presence of a specific word to a certain paper. A ‘connects’ rela-
tionship is only applicable between two ‘Word’ entities and denotes their co-
occurrence within a predefined sliding window of text. The subgraph constructed by
the ‘Word’ and ‘Paper’ entities, as well as the ‘includes’, ‘connects’
and ‘is_similar’ relationships, corresponds to the graph-of-docs representation
of the textual data of the available papers (see Fig. 16.3).

An ‘is_similar’ relationship links either a pair of ‘Paper’ or ‘Author’
nodes. In the former case, it denotes the graph similarity of the graph-of-words repre-
sentation of each paper. In the latter, it denotes the graph similarity between the graph-
of-docs representations associated to the two authors. The subgraph that consists of
the ‘Author’ entities and the ‘is_similar’ relationships corresponds to the
authors similarity subgraph.

A ‘cites’ relationship links two ‘Paper’ nodes. A ‘writes’ relationship
links an ‘Author’ with a ‘Paper’ entity. An ‘affiliates_with’ rela-
tionship connects an ‘Author’ entity with a ‘Laboratory’, ‘Location’
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Fig. 16.3 Representing textual data of papers using the graph-of-docsmodel (relationships between
papers are denoted with dotted lines). The graph-of-docs representation is associated to the
‘Paper’ and ‘Word’ entities, and the ‘includes’, ‘connects’ and ‘is_similar’
relationships of the scientific knowledge graph

or ‘Institution’ entity. A ‘co_authors’ relationship denotes a research
collaboration between the connected ‘Author’ entities. The subgraph constructed
of the available ‘Author’ entities and the ‘co_authors’ relationships corre-
sponds to the co-authors’ subgraph.

The produced knowledge graph enables the utilization of well-studied graph algo-
rithms, which in turn assists in gaining insights about various tasks, such as finding
experts nearbybasedon the ‘Location’ entities, recommending similar researchwork,
and discovering future research collaborations; this chapter focuses on the last of
these tasks.

For the discovery of future research collaborations, we employ various link
prediction and ML techniques. Particularly, we reduce the problem of predicting
future research collaborations to the common binary classification problem. By
using a binary classifier, we are able to predict the presence or the absence of a
‘co_authors’ relationship between two ‘Author’ entities, and thus build a
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link prediction algorithm for the discovery of future research collaborations. Avail-
able binary classifiers include logistic regression, k-nearest neighbors, linear support
vector machines, decision tree, and neural networks [38].

16.4 Experiments

For the implementation and evaluation of our approach, we used the Python program-
ming language and the scikit-learn ML library (https://scikit-learn.org). The Neo4j
graph database (https://neo4j.com) has been utilized for the representation of the
graph-of-docs and the corresponding knowledge graph. The full code, datasets, and
evaluation results of our experiments are freely available at https://github.com/imis-
lab/book-chapter.

16.4.1 Cord-19

The COVID-19 Open Research Dataset (CORD-19) [39, 40] contains information
about 63,000 research articles, related to COVID-19, SARS-CoV-2 and other similar
coronaviruses. It is freely distributed from the Allen Institute for AI and Semantic
Scholar (https://www.semanticscholar.org/cord19). The articles in CORD-19 have
been collected from popular scientific repositories and publishing houses, including
Elsevier, bioRxiv,medRxiv,WorldHealthOrganization (WHO) and PubMedCentral
(PMC). Each scientific article in CORD-19 has a list of specific attributes, namely
‘citations’, ‘publish time’, ‘title’, ‘abstract’ and ‘authors’, while the majority of the
articles (51,000) also includes a ‘full text’ attribute. Undoubtfully, the CORD-19
dataset is a valuable source of knowledge as far as the COVID-19-related research
is concerned; however, the fact that the majority of the data included is unstructured
text renders a set of limitations in its processing. As advocated in the literature, the
exploitation of a graph-based text representation in combination with a knowledge
graph seems to be a promising step towards structuring this data [4, 5, 41]. For the
construction of our scientific knowledge graph, we utilize the ‘abstract’, ‘authors’
and ‘publish time’ attributes of each scientific article. We do not exploit the ‘full
text’ attribute due to hardware limitations, however, we assume that the abstract of
a paper consists a representative piece of its full text.

16.4.2 Experimental Setup

Selection of measures and metrics. To construct the authors similarity subgraph
and to populate the edges of the ‘Author’.‘is_similar’ type, we use the

https://scikit-learn.org
https://neo4j.com
https://github.com/imis-lab/book-chapter
https://www.semanticscholar.org/cord19
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Jaccard similarity index, since it deals only with the percentage of common set of
words versus all words, ignoring their document frequency.

Construction of datasets for the link prediction problem. To test whether our
approach performs well and does not overfit, regardless of the sample size of the
dataset, we extract nine different datasets from the original one, corresponding to
different volumes of papers (ranging from 1536 to 63,023). For the sample creation,
we utilize (i) the authors similarity subgraph, and (ii) the co-authors subgraph (i.e.
the subgraph generated from the ‘co_authors’ edges; it is noted that edges
also store the year of the first collaboration between authors, as a property). The
features of a sample encapsulate either structural or textual characteristics of the
whole knowledge graph (e.g. the similarity between the papers of two authors).
Furthermore, each sample describes the relationship between two ‘Author’ nodes
of the knowledge graph. We consider the classical link prediction algorithms as the
baseline methods to be compared against our approach, which they only utilize the
structural characteristics of the graph.

The features of a sample are analytically described in Table 16.1. Each of the nine
datasets consists of a different number of randomly chosen samples. All datasets
are balanced, in that the number of positive and negative samples are equal (see
Table 16.2). To examine whether the features taken into account each time affect the
efficiency of the ML models, we execute a set of experiments with different combi-
nations of selected features (see Table 16.3). Finally, it is noted that the samples for
the training subset are selected from an earlier instance in time of the co-authors
subgraph, which is created from ‘co_authors’ edges first appeared within or
before the year of 2013; respectively, the samples of the testing subset include

Table 16.1 A detailed explanation of the features of a sample. Each feature is associated to either
a structural or a textual relationship between two given ‘Author’ nodes

Feature Description Type

adamic_adar The sum of the inverse logarithm of the degree of the set of
common neighbor ‘Author’ nodes shared by a pair of
nodes

Structural

common_neighbors The number of neighbor ‘Author’ nodes that are
common for a pair of ‘Author’ nodes

Structural

preferential_attachment The product of the in-degree values of a pair of
‘Author’ nodes

Structural

total_neighbors The total number of neighbor ‘Author’ nodes of a pair
of ‘Author’ nodes

Structural

similarity The textual similarity of the graph-of-docs graphs of
two‘Author’ nodes. The Jaccard index is used to
calculate the similarity

Textual

label The existence or absence of a ‘co_authors’ edge
between two ‘Author’ nodes. A positive label (1)
denotes the existence, whereas the absence is denoted by a
negative label (0)

Class
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Table 16.2 Number of
samples (|samples|) for each
dataset (the number of
positive and negative samples
of the training and testing
subsets are fully balanced); a
positive sample denotes the
existence of a
‘co_authors’ edge
between two ‘Author’
nodes, while a negative
sample denotes the absence of
such an edge

Training subset |samples| Testing subset |samples|

Dataset 1 668 840

Dataset 2 858 1566

Dataset 3 1726 2636

Dataset 4 3346 7798

Dataset 5 5042 12,976

Dataset 6 5296 16,276

Dataset 7 6210 25,900

Dataset 8 8578 34,586

Dataset 9 13,034 49,236

Table 16.3 Combinations of features aiming to test how different set of features affect the
performance of an ML model; “top n” indicates the top number of features, extracted from each
community of similar documents

Combination name Features included

Structural characteristics and authors similarity
top 5 (STR-SIM_top5)

adamic_adar, common_neighbors,
preferential_attachment, total_neighbors,
similarity_top_5

Structural characteristics and authors similarity
top 100 (STR-SIM_top100)

adamic_adar, common_neighbors,
preferential_attachment, total_neighbors,
similarity_top_100

Structural characteristics and authors similarity
top 250 (STR-SIM_top250)

adamic_adar, common_neighbors,
preferential_attachment, total_neighbors,
similarity_top_250

Structural characteristics (STR-baseline) adamic_adar, common_neighbors,
preferential_attachment, total_neighbors

‘co_authors’ edges created after 2013. This separation in time ensures that
we avoid any data leakage between the training and testing subsets [24].

16.4.3 Evaluation

To evaluate the effectiveness of our approach, we assess how the performance of
various binary classifiers is affected by the similarity features. The list of the binary
classifiers considered in this chapter includes: logistic regression (LR), k-nearest
neighbors (50NN), linear support vector machines with a linear kernel function
(LSVM), support vector machines with a RBF kernel function (SVM), decision
tree (DT) and neural networks (NN). To normalize the features from our datasets, we
employ themin–maxnormalization procedure.An extensive list of experiments using
various classifiers along with different hyperparameter configurations can be found
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Table 16.4 Hyperparameter
configurations in Scikit-Learn
for each of the utilized binary
classifiers; further
hyperparameter
configurations are described
in the Scikit-Learn
documentation

Binary classifier Hyperparameter configuration

LR solver = ‘lbfgs’, multi_class = ‘ovr’

50NN k = 50, weights = ‘uniform’

LSVM kernel = ’linear’

SVM kernel = ‘rbf’

DT max_depth = 5

NN solver = ‘adam’, activation = ‘relu’,
hidden_layers = 100 × 50

on the GitHub repository of this chapter (https://github.com/imis-lab/book-chapter).
The hyperparameter configurations can be also found in Table 16.4. Our performance
metrics include the accuracy, precision and recall of the binary classifiers.

The obtained results indicate that the inclusion of the similarity features (i)
increase the average accuracy, precision and recall scores, and (ii) decrease the
standard deviation of the aforementioned scores (Table 16.5). The decrement of the
standard deviation in the accuracy score indicates that our approach is reliable regard-
less of the size of the given dataset. Furthermore, by comparing the average preci-
sion score to the average recall score, we conclude that our approach predicts most
of the future collaborations correctly. The best average accuracy score is achieved
by the LSVM classifier, using the STR-SIM_top100 and STR-SIM_top250 feature
combinations.

As far as link prediction is concerned, our algorithm differs from existing ones
in that it considers both the textual similarity between the abstracts of the papers for
each pair of authors and the structural characteristics of the associated ‘Author’
nodes, aiming to predict a future collaboration between them. The utilization of
the textual information in combination with the structural information of a scientific
knowledge graph results in better andmore reliableMLmodels, which are less prone
to overfitting. Contrary to existing algorithms for the discovery of future research
collaborations, our approach exploits structural characteristics and does not ignore
the importance of the information related to the unstructured text of papers written
by authors. Finally, existing approaches that concentrate only on the exploitation of
unstructured textual data rely heavily on NLP techniques and textual representations,
which in turn necessitate the generation of sparse feature spaces; hence, in such
approaches, the effects of the ‘curse-of-dimensionality’ phenomenon re-emerge.

16.5 Conclusions

This chapter considers the problem of discovering future research collaborations
as a link prediction problem applied on scientific knowledge graphs. The proposed
approach integrates into a single knowledge graph both structured and unstructured

https://github.com/imis-lab/book-chapter
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textual data using the graph-of-docs text representation. For the required experimen-
tations, we generated nine different datasets using the CORD-19 dataset. For eval-
uation purposes, we assessed our approach against several link prediction settings,
which use various combinations of a set of available features. The evaluation results
demonstrate state-of-the-art average accuracy, precision and recall of the future
collaborations prediction task.However,we expect that these resultswill be improved
through the employment of contextual similarity functions that are based on graph
kernels [22].

In any case, our approach has a performance issue, since the time required to build
the scientific knowledge graph increases radically with the number of graph nodes.
Aiming to address the above limitation, while also enhancing the performance and
advancing the applicability of our approach, our future work directions include: (i)
the utilization of in-memory graph databases in combination with Neo4j; (ii) the
experimentation with word, node and graph embeddings [42–44],(iii) the integration
of other scientific research graphs such as OpenAIRE [45] and Microsoft Academic
Graph [46], and (iv) the integration and meaningful exploitation of our approach
into collaborative research environments [47].

As far as the CORD19 dataset is concerned, it is worth noting here that it is
increasingly explored nowadays in the investigation of various research topics. For
instance, Colavizza et al. [48] attempt to produce a scientific overview of the dataset
by employing various approaches such as a statistical analysis of the dataset’s meta-
data, unsupervised key-phrase extraction, supervised citation clustering, and LDA
topic modelling. Papadopoulos et al. [49] aim to visualize in a graph various triplet
fact in the form of subject-predicate-object (i.e. a knowledge graph approach). They
achieve their researchgoal by combing a set of pre-trainedBERTmodels andkeyword
extraction tools. Guo et al. [50] aim to augment the task of semantic textual similarity
(STS) by producing an ad-hoc dataset (namely,CORD19STS, which aims to alleviate
the poor performance of generalized STS models by fine-tuning a BERT-like deep
learning language model. Finally, Wang et al. [39, 40] introduce a weakly supervised
Named Entity Recognition model by optimizing pre-trained spaCy models (https://
spacy.io/), ranging from general English language to domain specific biology terms
in English.
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(www.openbio.eu), which is co-financed by the European Union and Greek national funds
through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the
call RESEARCH—CREATE—INNOVATE (Project id: T1EDK- 05275).

References

1. D. Nathani, J. Chauhan, C. Sharma,M. Kaul, Learning attention-based embeddings for relation
prediction in knowledge graphs, in Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics (ACL) (2019), pp. 4710–4723

https://spacy.io/
http://www.openbio.eu


16 Medical Knowledge Graphs in the Discovery … 389

2. S. Vahdati, G. Palma, R.J. Nath, C. Lange, S. Auer, M.E. Vidal, Unveiling scholarly commu-
nities over knowledge graphs, in International Conference on Theory and Practice of Digital
Libraries (Springer, Cham, 2018), pp. 103–115

3. B. Ponomariov, C. Boardman, What is co-authorship? Scientometrics 109(3), 1939–1963
(2016)

4. Q. Wang, Z. Mao, B. Wang, L. Guo, Knowledge graph embedding: a survey of approaches and
applications. IEEE Trans. Know. Data Eng. 29(12), 2724–2743 (2017)

5. N. Veira, B. Keng, K. Padmanabhan, A. Veneris, Unsupervised embedding enhancements of
knowledge graphs using textual associations, in Proceedings of the 28th International Joint
Conference on Artificial Intelligence (AAAI Press 2019), pp. 5218–5225

6. N. Giarelis, N. Kanakaris, N. Karacapilidis, An innovative graph-based approach to advance
feature selection from multiple textual documents, in IFIP International Conference on
Artificial Intelligence Applications and Innovations (Springer, Cham, 2020a), pp. 96–106

7. N. Giarelis, N. Kanakaris, N. Karacapilidis, On a novel representation of multiple textual
documents in a single graph, in Intelligent Decision Technologies 2020—Proceedings of the
12th KES International Conference on Intelligent Decision Technologies (KES-IDT-20), ed. by
I. Czarnowski, R.J. Howlett, L.C. Jain Split (Croatia, Springer, 2020b)

8. N. Giarelis, N. Kanakaris, N. Karacapilidis, On the utilization of structural and textual informa-
tion of a scientific knowledge graph to discover future research collaborations: a link prediction
perspective, in Proceedings of the 23rd International Conference on Discovery Science (DS
2020), ed. byA. Appice, G. Tsoumakas, Y.Manolopoulos and S.Matwin, vol. 12323 (Springer,
Cham, LNAI, 2020c), pp. 437–450

9. Á. Vathy-Fogarassy, J. Abonyi, Graph-Based Clustering and Data Visualization Algorithms
(Springer, London, 2013)

10. S. Li, J. Huang, Z. Zhang, J. Liu, T.Huang,H. Chen, Similarity-based future common neighbors
model for link prediction in complex networks. Sci. Rep. 8, 1–11 (2018)

11. R. Albert, A. Barabási, Statistical mechanics of complex networks. ArXiv, cond-mat/0106096
(2001)

12. L.A. Adamic, E. Adar, Friends and neighbors on the Web. Soc. Networks 25, 211–230 (2003)
13. P. Jaccard, Étude comparative de la distribution florale dans une portion des Alpes et des Jura.

Bull. Soc. Vandoise Sci. Nat. 37, 547–579 (1901)
14. F. Rousseau, M. Vazirgiannis, Graph-of-word and TW-IDF: new approach to ad hoc IR,

in Proceedings of the 22nd ACM International Conference on Information & Knowledge
Management (ACM Press, 2013), pp. 59–68

15. F. Rousseau, E. Kiagias, M. Vazirgiannis, Text categorization as a graph classification problem,
in Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, vol. 1 (2015),
pp. 1702–1712

16. X. Yan, J. Han, gspan: Graph-based substructure pattern mining, in Proceedings of the IEEE
International Conference on Data Mining (IEEE Press, 2002), pp. 721–724

17. S. Nijssen, J.N. Kok, A quickstart in frequent structure mining can make a difference, in
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (ACM Press 2004), pp. 647–652

18. H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, K. Tsuda, gBoost: a mathematical programming
approach to graph classification and regression. Mach. Learn. 75(1), 69–89 (2009)

19. K. Henni, N. Mezghani, C. Gouin-Vallerand, Unsupervised graph-based feature selection via
subspace and PageRank centrality. Expert Syst. Appl. 114, 46–53 (2018)

20. S. Fakhraei, J. Foulds, M. Shashanka, L. Getoor, Collective spammer detection in evolving
multi-relational social networks, in Proceedings of the 21 ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2015), pp. 1769–1778

21. D. Ienco, R. Meo, M. Botta, Using page rank in feature selection, in SEBD (2008), pp. 93–100
22. G. Nikolentzos, G. Siglidis, M. Vazirgiannis, Graph Kernels: a survey. arXiv preprint arXiv:

1904.12218 (2019)

http://arxiv.org/abs/1904.12218


390 N. Giarelis et al.

23. G. Siglidis, G. Nikolentzos, S. Limnios, C. Giatsidis, K. Skianis, M. Vazirgianis, Grakel: a
graph kernel library in python. arXiv preprint arXiv:1806.02193 (2018)

24. D. Liben-Nowell, J.M. Kleinberg, The link-prediction problem for social networks. J. Am.
Soc. Inf. Sci. 58, 1019–1031 (2007)

25. R. Guns, R. Rousseau, Recommending research collaborations using link prediction and
random forest classifiers. Scientometrics 101(2), 1461–1473 (2014)

26. J. Huang, Z. Zhuang, J. Li, C.L. Giles, Collaboration over time: characterizing and modeling
network evolution, in Proceedings of the 2008 International Conference on Web Search and
Data Mining (2008), pp. 107–116

27. Y. Sun, R. Barber, M. Gupta, C.C. Aggarwal, J. Han, Co-author relationship prediction in
heterogeneous bibliographic networks, in 2011 International Conference onAdvances in Social
Networks Analysis and Mining (IEEE, 2011), pp. 121–128

28. Q. Yu, C. Long, Y. Lv, H. Shao, P. He, Z. Duan, Predicting co-author relationship in medical
co-authorship networks. PloS one 9(7), e101214 (2014)

29. P.M. Chuan, M. Ali, T.D. Khang, N. Dey, Link prediction in co-authorship networks based on
hybrid content similarity metric. Appl. Intell. 48(8), 2470–2486 (2018)

30. M. Fire, L. Tenenboim-Chekina, O. Lesser, R. Puzis, L. Rokach, Y. Elovici, Link prediction
in social networks using computationally efficient topological features, in 2011 IEEE Third
Int’l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int’l Conference
on Social Computing (2011), pp. 73–80

31. K. Julian, W. Lu, Application of machine learning to link prediction (2016)
32. G. Panagopoulos, G. Tsatsaronis, I. Varlamis, Detecting rising stars in dynamic collaborative

networks. J. Infor. 11, 198–222 (2017)
33. H. Lu, M. Halappanavar, A. Kalyanaraman, Parallel heuristics for scalable community

detection. Parallel Comput. 47, 19–37 (2015)
34. U.N. Raghavan, R. Albert, S. Kumara, Near linear time algorithm to detect community

structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007)
35. A. Monge, C. Elkan, An efficient domain-independent algorithm for detecting approximately

duplicate database records (1997)
36. S. Fortunato, Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
37. Z. Yang, R. Algesheimer, C.J. Tessone, A comparative analysis of community detection

algorithms on artificial networks. Sci. Rep. 6, 30750 (2016). https://doi.org/10.1038/srep30750
38. C.C. Aggarwal, Machine Learning for Text. Springer International Publishing (2018)
39. L. Wang, K. Lo, Y. Chandrasekhar, R. Reas, J. Yang, D. Eide, P. Mooney, CORD-19: The

Covid-19 Open Research Dataset. arXiv preprint arXiv:2004.10706 (2020)
40. X. Wang, X. Song, B. Li, Y. Guan, J. Han, Comprehensive Named Entity Recognition on

CORD-19 with Distant or Weak Supervision. arXiv preprint arXiv:2003.12218 (2020)
41. Z. Wang, J. Li, Z. Liu, J. Tang, Text-enhanced representation learning for knowledge graph, in

Proceedings of International Joint Conference on Artificial Intelligent (IJCAI) (2016), pp. 4–17
42. W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large graphs, in

Advances in Neural Information Processing Systems (2017), pp. 1024–1034
43. T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed representations of words

and phrases and their compositionality, in Advances in Neural Information Processing Systems
(NeurIPS) (2013), pp. 3111–3119

44. G. Nikolentzos, P. Meladianos, M. Vazirgiannis, Matching node embeddings for graph
similarity, in Thirty-First AAAI Conference on Artificial Intelligence (2017)

45. P. Manghi, C. Atzori, A. Bardi, J. Shirrwagen, H. Dimitropoulos, La Bruzzo, S.F. Summan,
OpenAIRE Research Graph Dump (Version 1.0.0-beta) . Zenodo. (2019)

46. S. Arnab, S. Zhihong, H.M. Yang Song, B.H. Darrin Eide, W. Kuansan, An overview of
microsoft academic service (MAS) and applications, in Proceedings of the 24th International
Conference on World Wide Web (WWW ’15 Companion). (ACM, New York, NY, USA, 2015),
pp. 243–246

http://arxiv.org/abs/1806.02193
https://doi.org/10.1038/srep30750
http://arxiv.org/abs/2004.10706
http://arxiv.org/abs/2003.12218


16 Medical Knowledge Graphs in the Discovery … 391

47. A. Kanterakis, G. Iatraki, K. Pityanou, L. Koumakis, N. Kanakaris, N. Karacapilidis, G.
Potamias, Towards reproducible bioinformatics: The OpenBio-C Scientific Workflow Envi-
ronment. in Proceedings of the 19th IEEE International Conference on Bioinformatics and
Bioengineering (BIBE) (Athens, Greece, 2019), pp. 221–226

48. G. Colavizza, R. Costas, A. Traag, N. van Eck, T. van Leeuwen, L. Waltman, A Scientometric
overview of CORD-19. bioRxiv preprint (2020)

49. D. Papadopoulos, N. Papadakis, A. Litke, A methodology for open information extraction and
representation from large scientific corpora: the CORD-19 data exploration use case. Appl.
Sci. 10, 5630 (2020)

50. X. Guo, H. Mirzaalian, E. Sabir, A. Jaiswal, W. Abd-Almageed, CORD19STS: COVID-19
Semantic Textual Similarity Dataset. arXiv preprint arXiv:2007.02461 (2020)

http://arxiv.org/abs/2007.02461

	16 Medical Knowledge Graphs in the Discovery of Future Research Collaborations
	16.1 Introduction
	16.2 Background Issues
	16.2.1 Graph Measures and Indices
	16.2.2 Graph-Based Text Representations
	16.2.3 Graph-Based Feature Selection
	16.2.4 Graph-Based Text Categorization
	16.2.5 Graph-Based Link Prediction

	16.3 The Proposed Framework
	16.3.1 Graph-Based Text Representation
	16.3.2 Graph-Based Feature Selection
	16.3.3 Graph-Based Text Categorization
	16.3.4 Graph-Based Link Prediction

	16.4 Experiments
	16.4.1 Cord-19
	16.4.2 Experimental Setup
	16.4.3 Evaluation

	16.5 Conclusions
	References


