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A B S T R A C T

This paper employs techniques and algorithms from the fields of natural language processing, graph repre-
sentation learning and word embeddings to assist project managers in the task of personnel selection. To do
so, our approach initially represents multiple textual documents as a single graph. Then, it computes word
embeddings through representation learning on graphs and performs feature selection. Finally, it builds a
classification model that is able to estimate how qualified a candidate employee is to work on a given task,
taking as input only the descriptions of the tasks and a list of word embeddings. Our approach differs from
the existing ones in that it does not require the calculation of key performance indicators or any other form
of structured data in order to operate properly. For our experiments, we retrieved data from the Jira issue
tracking system of the Apache Software Foundation. The evaluation results show, in most cases, an increase of
0.43% in the accuracy of the proposed classification models when compared against a widely-adopted baseline
method, while their validation loss is significantly decreased by 65.54%.
. Introduction

Nowadays, artificial intelligence (AI) has changed our life dramat-
cally by improving user experience, recommending products, mak-
ng predictions, automating repetitive tasks and so on. Entertainment,
ransportation, e-commerce, fraud detection, online customer support
nd medicine are just a few examples of the fields where artificial intel-
igence has been successfully applied on (Abduljabbar, Dia, Liyanage, &
agloee, 2019; Awoyemi, Adetunmbi, & Oluwadare, 2017; Kanakaris,
iarelis, Siachos, & Karacapilidis, 2021; Powell, Rotz, & O’Malley,
020; Sezer & Altan, 2021; Vanneschi, Horn, Castelli, & Popovič,
018). Furthermore, modern Machine Learning (ML) models enable the
orecasting of various ever-changing phenomena using time series data
nd feature selection techniques. For example, ML models may assist
n predicting (i) the future price of crude oil (Karasu, Altan, Bekiros, &
hmad, 2020), (ii) the speed of wind (Altan, Karasu, & Zio, 2021), and

iii) the economic trend of a country using time series analysis (Altan
Karasu, 2019). Despite the radical changes and improvements that

I and ML offer to the aforementioned sectors, there has not been any
ignificant progress as far as project management and issue tracking
rocess are concerned (Dam, Tran, Grundy, Ghose, & Kamei, 2019).

So far, the majority of existing project management systems (e.g.
ira, Wrike) assist users in mainly planning and monitoring their
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projects and the corresponding tasks. However, they unintentionally
hide important information concerning the company itself and do not
fully take advantage of the complex multidimensional data found in the
hosted projects (Haidabrus, Grabis, & Protsenko, 2021). Moreover, the
existence of numerous departments within a company and the diversity
of viewpoints among employees make it difficult to identify and absorb
the related information (Bjorvatn & Wald, 2018).

By utilizing well-tested and broadly accepted ML techniques, project
management systems are able to detect valuable information and pro-
vide insights (Mahdi, Mohamed Zabil, Ahmad, Ismail, Yusoff, Cheng,
Azmi, Natiq, & Happala Naidu, 2021). Hence, new opportunities can be
created ranging from the ability to recommend solutions and automate
simple tasks (e.g. reporting) to solving more complex problems such as
finding candidate employees for a list of tasks or even automatically
assigning the employees to the available tasks (Azzini, Galimberti,
Marrara, & Ratti, 2018).

As far as the process of task assignment is concerned, several
approaches can be found in the literature (Fatima, Azam, Anwar,
& Rasheed, 2020). These approaches are divided into two distinct
categories, namely the ‘operations research’-based and the ML-based
ones. The former view the problem of task assignment as a time-
based one, which is tackled through various classical mathematical
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techniques (e.g. combinatorics, optimizations etc.) or resource schedul-
ing algorithms (e.g. genetic algorithms). The latter focus on extracting
important text features, which are then fed into supervised ML algo-
rithms in order to (i) estimate the probability for each given employee
to work on a given set of tasks and (ii) assign employees to software
bugs (Sajedi-Badashian & Stroulia, 2020; Tran, Le, Nguyen, & Ho,
2019). Nonetheless, the above ML-based approaches can work with any
type of textual ‘project management’-related data.

There is a number of advantages and disadvantages for both of
the abovementioned categories. On the one hand, the task scheduling
approaches can estimate the maximum number of tasks that can be
concurrently processed and predict the minimum amount of time re-
quired to complete a project. However, they fail to match employees
to tasks relevant to their skills, since they assume that all tasks or
employees are similar to one another. On the other hand, ML-based
approaches take into account the skill relevance in different tasks but
require large amounts of textual data for predicting accurately the most
suitable employee for each task.

In this work, we present a novel four-phase approach that assists
organizations in the personnel selection process. Our approach is a ML-
based one in that it utilizes textual data to assign people to tasks. The
outcome of our approach is an ML model that is able to estimate how
relevant or qualified a candidate employee is to work on a given task.
Our ML model takes as an input a list of documents that describes
completed tasks and the list of the assignees of the tasks. Our approach
differs from the existing ones in that it does not require the calculation
of Key Performance Indicators (KPIs) or any form of structured data in
order to operate. Instead, it relies on techniques from Natural Language
Processing (NLP), graph representation learning and word embeddings
to reveal hidden knowledge that exists in unstructured textual data. It is
domain agnostic since no additional information about the employees
(e.g. their curricula or profiles) is needed to operate.

For the implementation of our approach, we use the Neo4j graph
database, the Python programming language and the TensorFlow deep
learning library. To evaluate our approach, we benchmark it against
a widely used classification model on a dataset retrieved from the
official Jira instance of the Apache Software Foundation. This dataset
concerns the development of 168 open source software projects. The ex-
perimental results demonstrate a significant improvement in accuracy
of the classification models generated by following our approach. The
related code, dataset and evaluation results are openly accessible on
the GitHub1 platform.

Generally, project management systems encompass large amounts
of unstructured textual data. Our motivation is to build a novel ap-
proach that analyzes the aforementioned data and makes recommenda-
tions related to task assignment and personnel selection by exploiting
information extracted from already completed tasks.

The main contribution of this paper is four-fold:

• We provide the research community with an approach that im-
proves existing ones by exploiting word embeddings, neural net-
works and graph representation learning techniques in an inte-
grated way.

• We investigate whether the analysis of unstructured textual data
benefits the personnel selection process or not.

• We propose a four-phase pipeline that assists project managers in
the personnel selection process.

• We provide the research community with a rich dataset contain-
ing tasks of the projects of an organization that can be utilized as
a baseline in similar research directions.

The remainder of this paper is organized as follows. Background
concepts and related work are introduced in Section 2. In Section 3,
our approach is presented in a thorough and elaborated fashion, while
the experiments carried out to evaluate our approach are reported in
Section 4. The novelty, future work directions as well as the limitations
of the proposed approach are discussed in Section 5.

1 https://github.com/imis-lab/personnel-selection.
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2. Background and related work

2.1. Graph-related concepts and measures

In graph theory, numerous graph types have been developed, which
are primarily differentiated on the types of vertices and edges, the
features that their nodes or edges may incorporate and their general
architecture (West et al., 2001). For the context of this paper, we
introduce the following graph notations.

Definition 1 (Graph). Let a graph 𝐺 = (𝑉 ,𝐸) be defined as a tuple
consisting of a set of vertices (or nodes) 𝑉 and a set of edges 𝐸 ⊆ 𝑉 ×𝑉 .

A vertex, denoted as 𝑣𝑖 belongs to the graph 𝐺 if 𝑣𝑖 ∈ 𝑉 . Similarly,
n edge 𝑒𝑖 = (𝑣𝑥, 𝑣𝑦), connecting two nodes 𝑣𝑥, 𝑣𝑦 ∈ 𝑉 , is part of the
raph 𝐺 if 𝑒𝑖 ∈ 𝐸. The size of the graph is defined by the number of
ertices |𝑉 |, while the number of the edges is defined as |𝐸|.

efinition 2 (Directed Graph). A directed graph is a graph 𝐺 = (𝑉 ,𝐸),
where the edges are directed by arrows. Similarly, if the edges are not
directed, the graph is called undirected.

Definition 3 (Heterogeneous Graph). A heterogeneous graph is a graph
𝐺 = (𝑉 ,𝐸), in which there exists a node type mapping function 𝑙 ∶ 𝑉 →
𝐿, which assigns types/labels to its vertices and a link type mapping
function 𝑙 ∶ 𝐸 → 𝐿̂ which assigns types/labels to its edges from a
discrete set of types 𝐿 and 𝐿̂, respectively.

If only the vertices are labeled, the graph is called node-labeled.
Similarly, in the case that only the edges are labeled, the graph is
called edge-labeled, while a fully-labeled graph is considered to be a
graph with both vertices and edges labeled. In this paper, we consider
a heterogeneous graph to be fully-labeled.

Definition 4 (Neighbor Nodes). A pair of vertices 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 of a graph
𝐺 = (𝑉 ,𝐸) are called neighbor nodes, if and only if the edge 𝑒 =
(𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸

For the rest of this paper, the notation 𝑁(𝑣) will denote the set of
neighbors for a node 𝑣.

Definition 5 (Jaccard Coefficient). The Jaccard Coefficient index for a
pair of vertices 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 of a graph 𝐺 = (𝑉 ,𝐸), denoted by 𝐽 (𝑣𝑖, 𝑣𝑗 ),
is a statistical metric used for calculating the similarity or diversity of
two nodes. Specifically, it considers the amount of the intersection of
their neighbor nodes (the set of common neighbors) over the union of
them (the set of nodes that are neighbors with either 𝑣𝑖 or 𝑣𝑗) (Jaccard,
1901). It is defined as:

𝐽 (𝑣𝑖, 𝑣𝑗 ) =
|𝑁(𝑣𝑖) ∩𝑁(𝑣𝑗 )|
|𝑁(𝑣𝑖) ∪𝑁(𝑣𝑗 )|

efinition 6 (Cosine Similarity). The Cosine Similarity measure for a
pair of vectors 𝑥⃗, 𝑦 ∈ R𝐷, denoted by 𝑐𝑜𝑠(𝑥⃗, 𝑦), is a similarity metric cal-
culated between two non-zero vectors, which is commonly calculated
as the Euclidean dot product between vectors x, y. It is defined as:

𝑐𝑜𝑠(𝑥⃗, 𝑦) =
𝑥⃗ ⋅ 𝑦

‖

‖

𝑥⃗‖
‖

‖

‖

𝑦‖
‖

=
∑𝐷

𝑛=1 𝑥𝑖 ⋅ 𝑦𝑖
√

∑𝐷
𝑛=1 𝑥

2
𝑖 ⋅

√

∑𝐷
𝑛=1 𝑦

2
𝑖

In this paper, we utilize the cosine similarity to calculate the simi-
larity between two word embeddings (Section 2.3).

2.2. Graph-based text representations

In the graph-of-words textual representation (Rousseau & Vazirgian-
nis, 2013), every document of a corpus is depicted as a single graph.
Particularly, each graph node resembles a unique word of a document

https://github.com/imis-lab/personnel-selection
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and each edge that connects a pair of vertices denotes the co-occurrence
between the corresponding words in the document. Co-occurrence, as
a term, stands for two words appearing simultaneously within a sliding
window of text; as suggested in Rousseau, Kiagias, and Vazirgiannis
(2015), the length of the sliding window should not exceed four words,
since there are diminishing returns in the accuracy of the ML models.
This approach (i.e. taking into consideration not only the appearance of
words in a document, but also the co-occurrence among them) allows
for a more sophisticated feature extraction and selection, compared
to the bag-of-words representation. However, graph-of-words bears a
great deal of limitations, as it does not allow the assessment of the
importance of a word for the whole corpus, neither does it depict
multiple documents in a single graph. In addition, there is no intuitive
way to support more complex data architectures, thus reducing the
expandability of this particular representation.

In an effort to tackle these restrictions, Giarelis, Kanakaris, and
Karacapilidis (2020b) suggested the graph-of-docs representation, where

single graph can incorporate multiple textual documents. The con-
truction of a heterogeneous graph, where words and documents are
epresented with different nodes, offers the following advantages: (i)
e can easily calculate the importance of a term in a whole set of
ocuments and (ii) we can configure the graph effortlessly, in order
o include more complicated data structures.

.3. Word embeddings

Generally speaking, word embeddings is a term used for the rep-
esentation of words for text analysis, typically in the form of a real-
alued vector that encodes the meaning of a word such that the words
hat are closer in the vector space are expected to be similar in meaning.

wide variety of techniques for determining word embeddings have
een proposed in the literature (Almeida & Xexéo, 2019). The most
opular ones include Word2Vec (Mikolov, Sutskever, Chen, Corrado, &
ean, 2013), GloVe (Pennington, Socher, & Manning, 2014) and fast-

Text (Joulin et al., 2016). These techniques are extensively utilized in a
plethora of typical NLP tasks, such as text classification and sentiment
analysis, or even in more complex tasks, such as spam detection and
question-answering.

The employment of pre-trained word embeddings guarantees accu-
racy improvement of an ML model, mitigates overfitting and facilitates
the generalization of the model (Andreas & Klein, 2014; Kholghi,
De Vine, Sitbon, Zuccon, & Nguyen, 2016). Practically, large datasets,
which are usually domain or language specific, are used for training
word embeddings. Hence, the produced word representations are able
to capture statistical correlations between words and conclusively, gen-
erate embeddings for a specific NLP domain/task (e.g. finding animals
similar to a mustang horse or finding cars similar to a Mustang).
Usually, pre-trained word embeddings are used as a starting point,
which are then adjusted for the specific task in hand. GoogleNews
using Word2Vec and Common Crawl using GloVe are some of the most
favored public pre-trained word embeddings. For an in-depth analysis
as far as the differences and use-cases of various pre-trained word
embeddings are concerned, we refer to van der Heijden, Abnar, and
Shutova (2020).

Additionally, we note that most of the techniques for extracting
word embeddings have been used as core elements for producing sen-
tence, paragraph and document embeddings, correspondingly (Kusner,
Sun, Kolkin, & Weinberger, 2015; Ye, Shen, Ma, Bunescu, & Liu, 2016).
For example, Doc2Vec (Le & Mikolov, 2014) depends on Word2Vec to
map each document of a corpus as a vector.

2.4. Graph embeddings

Feature extraction and selection in graph-based ML techniques, such
as node classification (i.e. predicting the labels of nodes in graphs),
3

have always been a challenging task. The nature of graph represen-
tations makes it impossible to create features automatically, as they
usually depend on specific graph properties. However, graph embed-
dings seek to remedy this shortcoming by mapping graphs to a vector
or a set of vectors, thus reducing the feature extraction task to a
representation learning one. Graph embeddings can be applied on node
level (i.e. producing a vector representation for each node of a graph)
or graph level (i.e. mapping a graph to a vector representation). In
this paper, we focus our interest on the former. The basic concept
behind node embeddings is to create a vector representation for a node
by capturing high-dimensional information regarding its neighborhood
and utilizing dimensionality reduction techniques to compress this
information into a low-dimensional feature space.

A variety of techniques for producing node embeddings has been
proposed in the literature. The majority of these methods suggest a
two-step process, as it was first introduced by DeepWalk (Perozzi, Al-
Rfou, & Skiena, 2014). DeepWalk is inspired by language modeling
techniques and proposes the construction of a set of random walks on
a graph. These random walks are fed to a SkipGram model (Mikolov,
Chen, Corrado, & Dean, 2013a) to produce a matrix of vector repre-
sentations (node embeddings), in a similar fashion to how a SkipGram

odel maximizes the co-occurrence probabilities among the words that
ppear within a window.
Node2Vec (Grover & Leskovec, 2016) is a semi-supervised repre-

entation learning graph algorithm that maximizes the probability of
aintaining the structure of neighborhoods of nodes. It bears a great

esemblance to DeepWalk, with the process of generating random walks
eing the factor that differentiates each other. Specifically, Node2Vec
stablishes second order random walks, which can be perceived as ran-
om walks that each step relies on input parameters. These parameters
ntroduce a bias, as far as different graph traversal strategies are con-
erned (e.g. Breadth-first Sampling, Depth-first Sampling). Node2Vec
anages to learn feature space representations for the nodes, based on

he graph properties and the neighborhoods they share.
Graph Embedding techniques that utilize SkipGram or other deep

eural techniques, such as DeepWalk, Node2Vec and LINE (Tang et al.,
015), usually suffer from a performance bottleneck, because of their
omputationally expensive nature, which results in an increased exe-
ution time. FastRP (Chen, Sultan, Tian, Chen, & Skiena, 2019) aims
o alleviate this downside without downgrading the quality of the
roduced node embeddings. This is achieved by capturing the implicit
elationships among nodes and then applying normalization of the sim-
larity between each node in the graph. The normalization procedure
ses the node degrees and a scalable dimension reduction algorithm,
.e. Very Sparse Random Projection to produce node embeddings in
time efficient way, compared to SkipGram and SVD (Mikolov, Chen,
orrado, & Dean, 2013b).
GraphSAGE (Hamilton, Ying, & Leskovec, 2017a) is an inductive

lgorithm for producing node embeddings. Unlike the abovementioned
lgorithms that inherently calculate the node embeddings for a fixed
raph (and thus producing poor results for newly added vertices,
hat did not participate in the training phase), GraphSAGE learns an
mbedding function, which can be generalized to include newly added
odes. The embedding function depends on node features, such as
extual properties and node degrees, although the adaptability of this
echnique enables users to apply GraphSAGE to graphs that may or
ay not contain node attributes, as well as to fixed or dynamically

xpanding graphs.

.5. Human resource allocation

Human resource allocation (i.e. assigning the most qualifying per-
onnel to the most appropriate task) is admittedly a difficult and
omplex process, with bad selections resulting in major time and cost
epercussions for a company. In the recent years, the concept of au-
omating human resource allocation has gained interest, leading to a
ariety of approaches originating from diverse research fields.
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A wide range of existing human resource management tools rely
on concepts and methods from the area of recommendation systems.
For instance, Alkhraisat (2016) proposes the utilization of document
similarity techniques and ontology, and semantic similarity measures
for the generation of an automated issue tracking system. The proposed
approach discovers similar issues and recommends candidate experts
as well as related materials to address each issue. Heyn and Paschke
(2013) describe an extension for the Jira platform, which works in a
similar fashion as the abovementioned work, enabling the re-usability
of similar work and the proper dissemination of work to the right
developers. Another expertise recommendation engine can be found
in Truica and Barnoschi (2019). This work utilizes text mining and
NLP techniques to infer knowledge from resumes. In the next phase,
the system produces a recommendation score for each candidate by
semantically matching the retrieved information with job skills and
requirements that are stored in a database.

The employment of appropriate Machine Learning algorithms has
gained interest lately for manufacturing innovative personnel selection
applications. For instance, the authors in McDonald and Ackerman
(2000) propose a novel approach for evaluating job candidates by
utilizing ML algorithms to extract a given job’s requirements and the
skills of the applicants by their LinkedIn profile. Having extracted
these features, a ranking of the applicants is created based on the
semantic similarity of the candidates’ skills with the job prerequisites.
In addition, the authors in Azzini et al. (2018) describe a knowledge
extraction process about academic candidates from a semi-structured
interview. To this end, they employ various ML classifiers in order
to discover the soft skills of individuals and match these skills with
job requirements. Their empirical results demonstrated that Support
Vector Machine (SVM) and naive Bayes (NB) approaches produce better
results than k-Nearest Neighbors (k-NN), decision trees and random
forests. Another application of ML classifiers can be found in Wowczko
(2015), where job advertisements in Ireland in 2014 were processed
to extract job titles and descriptions, which then served as input data.
A categorization of jobs was eventually developed, affiliating each job
categorization with a set of skills.

2.6. Task assignment

Helming, Arndt, Hodaie, Koegel, and Narayan (2011) built an au-
tomatic assignment ML system for work items (e.g. tasks and bug
reports). Their system models relationships between work items as
functional requirements (e.g. work A needs to be implemented before
work B), extracts significant textual features from work items using
TF-IDF, while the combined relationships and features are used for
training various supervised learning classifiers such as NB, SVM and
neural networks. Their implementation relies on known ML-oriented
java libraries and WEKA.

Jonsson et al. (2016) built an automated bug assignment system
that follows a similar approach as the one proposed in Helming et al.
(2011). Their work differs in that they only extract textual features from
successful bug reports, using TF-IDF as provided by the WEKA Java
library. Then, they train multiple classifiers that assign bug reports to
developer teams. After the classifiers are trained, they are merged into
a generalized classifier, which takes into account predictions from all
former classifiers. Overall, they report an accuracy ranging from 50%
to 89% with higher accuracy scores correlated to more training data.

Mo et al. (2020) built an automated staff assignment ML system
for building maintenance workers using NLP techniques. Particularly,
they utilize a bag-of-words implementation to extract meaningful fea-
tures from textual work descriptions and then predict which work
group of employees is assigned for this work. The unigrams extracted
from the bag-of-words implementation are fed into three supervised
learning classifiers, namely Linear Regression (LR), NB, and SVM.
Overall, their experimental results indicate an accuracy of 77% and
88% for predicting correctly the assigned workforce and work priority,
respectively.
4

Hassanien and Elragal (2021) utilize Word2Vec embeddings that
are fed to a siamese long short-term memory neural network, which
calculates the semantic similarity between texts of work descriptions
found in enterprise resource planning systems. Although this work
is not strictly related to the task assignment problem, it is the most
similar to our approach since it utilizes word embeddings to capture
the contextual information between important text features.

3. Our approach

In this section, we first define the preliminary concepts and the
mathematical notation needed to describe our methodology. Then, we
analytically present the proposed approach.

3.1. Preliminary concepts

Let 𝐼 = [𝑖1, 𝑖2,… , 𝑖𝑁 ] be a list of textual descriptions of issues or
tasks of an organization, where 𝑁 ∈ N (terms issue and task are used
interchangeably throughout this paper). Let 𝐴 = [𝑎1, 𝑎2,… , 𝑎𝐾 ] be a list
of assignees of an organization, where 𝐾 ∈ N. Let 𝑊 = [𝑤1, 𝑤2,… , 𝑤𝑀 ]
be the list of unique words from the textual descriptions 𝐼 , where
𝑀 ∈ N. Let 𝐸 = [𝑒1, 𝑒2,… , ⃗𝑒𝑀 ] be a list of word embeddings, where
𝑒𝑥 ∈ R𝐷 is a vector of 𝐷 dimensions that corresponds to the vector
representation of word 𝑤𝑥. Let 𝐹 = [𝑓1, 𝑓2,… , 𝑓𝑛] ⊆ 𝑊 be a feature
space, where 𝑓𝑥 denotes that the word 𝑤𝑥 has been selected as a feature
and the number of features 𝑛 ≤ 𝑀 .

Let 𝐺𝐷 = (𝑉 ,𝐸) be a heterogeneous graph of docs, where 𝑉 is the set
of vertices and 𝐸 is the set of edges of the graph. An edge 𝑒𝑖 = (𝑣𝑥, 𝑣𝑦)
links a vertex 𝑣𝑥 to a vertex 𝑣𝑦. Each vertex 𝑣𝑖 is associated with a
label 𝑙𝑖 ∈ {𝑤𝑜𝑟𝑑, 𝑖𝑠𝑠𝑢𝑒} and each edge 𝑒𝑖 is associated with a label
𝑙𝑖 ∈ {𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠, 𝑐𝑜_𝑜𝑐𝑐𝑢𝑟𝑠}. An edge 𝑒𝑖 = (𝑣𝑥, 𝑣𝑦) with a label 𝑙𝑖 = 𝑐𝑜_𝑜𝑐𝑐𝑢𝑟𝑠
can only connect two vertices when 𝑙𝑥 = 𝑙𝑦 = 𝑤𝑜𝑟𝑑. Similarly, an edge
𝑒𝑖 = (𝑣𝑥, 𝑣𝑦) with a label 𝑙𝑖 = 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠 can only connect two vertices
when 𝑙𝑥 = 𝑖𝑠𝑠𝑢𝑒 and 𝑙𝑦 = 𝑤𝑜𝑟𝑑. Let 𝑊𝑆𝐺 = (𝑉 ′, 𝐸′) be a homogeneous
word similarity graph, where 𝑉 ′ ⊂ 𝑉 is the set of vertices with a label
𝑙′𝑖 = 𝑤𝑜𝑟𝑑 for each vertex 𝑣′𝑖 ∈ 𝑉 ′ and 𝐸′ the set of edges of the graph
with a label 𝑙𝑖

′ = 𝑖𝑠_𝑠𝑖𝑚𝑖𝑙𝑎𝑟 for each edge 𝑒′𝑖 ∈ 𝐸′. An edge 𝑒′𝑖 = (𝑣′𝑥, 𝑣
′
𝑦)

links a vertex 𝑣′𝑥 to a vertex 𝑣′𝑦 and denotes a similarity greater than
a predefined threshold between the words 𝑤𝑥, 𝑤𝑦 as far as the cosine
similarity of their embeddings 𝑒𝑥, 𝑒𝑦 is concerned. Let 𝐼𝑆𝐺 = (𝑉 ′′, 𝐸′′)
be a homogeneous issue similarity graph, where 𝑉 ′′ ⊂ 𝑉 is the set of
vertices with a label 𝑙′′𝑖 = 𝑖𝑠𝑠𝑢𝑒 for each node 𝑣′′𝑖 ∈ 𝑉 ′′ and 𝐸′′ the set of
edges of the graph with a label 𝑙𝑖

′′ = 𝑖𝑠_𝑠𝑖𝑚𝑖𝑙𝑎𝑟 for each edge 𝑒′′𝑖 ∈ 𝐸′′.
An edge 𝑒′′𝑖 = (𝑣′′𝑥 , 𝑣

′′
𝑦 ) links a vertex 𝑣′′𝑥 to a vertex 𝑣′′𝑦 and denotes

a Jaccard index score greater than a predefined threshold between the
textual descriptions 𝑖𝑥, 𝑖𝑦.

3.2. Methodology

The aim of our work is to build an ML model that is able to estimate
how relevant or qualified a candidate employee is to work on a given
task 𝑖𝑥. Descriptions of past completed tasks and the names of assignees
are required as input. Our approach consists of four main phases which
are described in depth in the following sections and can be summarized
as follows (see also Fig. 1 for a more visualized summarization):

• Representing assignees and issues as a graph-of-docs (Sec-
tion 3.2.1). Transforming a list of issues I and a list of assignees
A into a graph-of-docs GD, as proposed in Giarelis et al. (2020b).

• Calculating graph-based word embeddings (Section 3.2.2).
Training a Word2Vec model on the list of descriptions of the
issues I in order to construct a similarity subgraph between
words appearing as nodes in the GD. In the next step, we employ
algorithms for representation learning on graphs (e.g. Node2Vec
and GraphSAGE) to produce a list of word embeddings for each
word using the similarity graph WSG as input. The abovemen-
tioned process enables us to fine-tune the trained list of word

embeddings E.
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Fig. 1. An overview of the proposed approach. ix denotes a node that corresponds to an issue or task. wx denotes a node that corresponds to a word from the descriptions of
he issues or tasks. The word embedding of a word (wx) is denoted by 𝑒𝑥, while the enhanced version for the same word is denoted by 𝑒𝑥

′. 𝑓𝑥 denotes a word that is selected
as a feature for the final neural network classification model. The color of the nodes in the community detection step denotes different groups of textually similar issues. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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• Feature selection (Section 3.2.3). Defining a feature space F
by identifying important terms in communities of textually sim-
ilar issues, as proposed in Giarelis, Kanakaris, and Karacapilidis
(2020a).

• Estimating the relevance of an employee (Section 3.2.4). Train-
ing a neural network, where the input is the description of an
issue 𝑖𝑥 and the output is the probability of how capable an
assignee 𝑎𝑥 is in completing the given issue.

3.2.1. Representing issues as a graph-of-docs
The first phase consists of integrating the list of textual descriptions

𝐼 and the list of assignees 𝐴 into a single graph, according to the graph-
of-docs representation (Giarelis et al., 2020b). The construction of a
heterogeneous graph-of-docs representation allows nodes with different
labels (i.e. ‘issue’, ‘word’ and ‘assignee’ labels) to co-exist into a single
graph. Similarly, the graph incorporates relationship edges with various
labels (i.e. ‘co_occurs’, ‘includes’, ‘is_similar ’ labels). As mentioned above,
the graph-of-docs representation facilitates the investigation of the
global importance of a word, as a word can be linked to multiple
documents. Finally, the existence of similarity edges between issues and
words enables us to calculate well-established metrics, as far as their
similarity is concerned. Before the construction of the GD, a training
step is performed. Specifically, the descriptions are used to train a
Word2Vec model in order to calculate a word embedding for each word
that appears in the graph.

The constructed heterogeneous graph 𝐺𝐷 contains all the con-
nections between the assignees, issues and the words of a corpus.
Edges with an ‘includes’ label are utilized to link each unique word of
the corpus to every issue node which contains this particular word.
Two word nodes are connected through a relationship edge with a
label ‘co_occurs’, which captures their co-existence within a sliding text
window of fixed length. An assignee is connected with an issue node
through a relationship edge with a label ‘is_assigned_to’. Last but not

least, the word similarity subgraph 𝑊𝑆𝐺 connects two highly similar f

5

word vertices based on their pairwise cosine similarity score, which is
calculated by their trained Word2Vec embeddings.

The above representation of a corpus of issues as a heterogeneous
graph enables us to reduce the human resource management prob-
lem to well-known and already studied graph tasks. By exploring
important structural characteristics of a graph, such as node central-
ity and frequent subgraphs, these methods could identify important
features, discover similar issues, generate issue clusters based on their
similarity and even enrich existing word embeddings, through graph
representation learning on the associated similarity subgraph.

3.2.2. Calculating graph-based word embeddings
This phase takes as an input the generated instance of the similarity

subgraph WSG, which captures the similarity between words through
the list of word embeddings E. The aim of this phase is to produce the
enriched word embeddings list 𝐸′ by fine-tuning the list E. To do so,
we employ graph representation learning algorithms, which consider
neighboring nodes as semantically similar. This enables us to utilize
the existing word embeddings by translating their semantic similarity
into a graph structural similarity. The graph representation algorithms
take as input the word similarity subgraph WSG. Each edge of the
graph also has a ‘score’ ∈ [0.0, 1.0] property, which reflects the pairwise
cosine similarity percent based on context provided by the initial list
of word embeddings E. For instance, for two synonym words 𝑤𝑥, 𝑤𝑦
he score property is ≈ 1, whereas for two antonym words 𝑤𝑥, 𝑤𝑦 the
core property is ≈ 0. Edges with a score value less than a predefined
hreshold are removed, aiming to avoid any information exchange
etween dissimilar nodes during the representation learning step. In
his paper, we employ Node2Vec and GraphSAGE as the main graph
epresentation learning algorithms. Section 4.3 provides a detailed
xplanation of how we utilize the aforementioned algorithms. Finally,
n in-depth review of graph representation learning algorithms can be

ound in Hamilton, Ying, and Leskovec (2017b).
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3.2.3. Feature selection
The task of the feature selection step of our pipeline is to produce a

feature space 𝐹 from the produced instance of graph-of-docs represen-
tation 𝐺𝐷. This phase can be distinguished into four steps: (i) creating
an issue similarity graph 𝐼𝑆𝐺, (ii) clustering (i.e. discovering commu-
nities) textually similar documents, (iii) performing feature selection
for every one of the discovered clusters and (iv) producing an overall
feature space 𝐹 by combining the separate feature spaces created in the
previous step (see also Algorithm 1).

The core idea behind the creation of an issue similarity graph 𝐼𝑆𝐺 is
that issues with textual similarities are expected to share a fair amount
of common word nodes and structural attributes. Thus, by employing
typical data mining similarity measures, we are able to recognize the
underlying patterns of the graph and calculate the (textual) similarity
between two issues 𝑖𝑥, 𝑖𝑦. Having calculated the similarity for each
pair of issue nodes, the construction of the similarity graph 𝐼𝑆𝐺 is
a straightforward process. The issue similarity graph consists of issue
nodes and edges with an ‘is_similar ’ label. The edges are also weighted
with a ‘𝑠𝑐𝑜𝑟𝑒’ ∈ [0, 1], which denotes how similar two nodes 𝑖𝑥, 𝑖𝑦 are
as far as their textual descriptions are concerned.

In the second step, the issue similarity graph facilitates the discovery
of communities of textually similar issues. To this end, we define a
distance value for every pair of issues, which is equal to the ‘score’
property of the edge connecting the corresponding issue nodes. As far as
clustering is concerned, a plethora of community detection algorithms
can be found in the literature, such as Louvain (Blondel, Guillaume,
Lambiotte, & Lefebvre, 2008), Weakly Connected Components (Levo-
rato & Petermann, 2011) and Label Propagation (Zhu & Ghahramani,
2002). In this paper, we employ Louvain as the main community
detection algorithm.

In the next step, we assume that issues that are part of the same
community are also likely to share common features. To extract the
most common features from every community, we prioritize the top-N
terms of each cluster, firstly by their descending score of document fre-
quency in the community, and secondly by their descending PageRank
score. These top-N words serve as the feature space for every discovered
community.

Finally, by merging the top-N terms of each cluster, we derive
the global feature space 𝐹 . The final feature space derived from the
above process is bound to be significantly smaller than the original
feature space. This dimensionality reduction (i) accelerates the feature
extraction and selection process, (ii) restricts the repercussions of the
‘curse-of-dimensionality ’ phenomenon, and (iii) increases the overall
robustness and reliability of the ML models.

3.2.4. Estimating the relevance of an employee
This phase takes as an input the list of the selected features F, the

produced graph-based word embeddings 𝐸′ and the list of the textual
descriptions of the issues I. It trains a neural network that is capable
of predicting how suitable an employee is to undertake a specific issue.
The proposed neural network is composed of 7 layers: (i) an input layer;
(ii) a vectorization layer, where the input text is transformed into a list
of features, retaining only the terms that are included in the feature
space F ; (iii) an embedding layer, where the terms are converted into
heir equivalent embedding representations inferred from the list 𝐸′;

(iv) a dense layer; (v) a dropout layer, which mitigates overfitting;
vi) a pooling layer, where the embedding for the whole text of an
ssue is calculated by aggregating the embedding representations of the
eatures, using a predefined pooling function such as max or average
ooling; (vii) an output layer, where the final relevance scores are
alculated by an activation function such as softmax.

At this point of our pipeline process, the relevance classification
roblem has been reduced to a text classification one with multiple
lasses. The names of the candidate employees serve as the set of the
odel classes. A classification algorithm is utilized to accurately predict

he class, which will be assigned to every issue (based on the probability
6

Algorithm 1: Feature selection
Input: an instance of the graph-of-docs representation 𝐺𝐷 = (𝑉 ,𝐸)
Result: a feature space 𝐹
// Step 1
IV ← get_all_issue_nodes(𝐺𝐷);
ISG ← initialize_graph();
for each node 𝑣 in 𝐼𝑉 do

for each node 𝑢 in 𝐼𝑉 do
similarity_score ← calculate_similarity(𝑣, 𝑢, Jaccard);
add_nodes_to_graph(ISG, 𝑣, 𝑢, similarity_score);

end
end
// Step 2
communities ← [];
for each node 𝑣 in 𝐼𝑆𝐺 do

add_node_to_a_community(communities, 𝑣, Louvain);
nd
/ Step 3
ommunities_topN ← [];
for each community 𝑐 in communities do

𝑊 𝑉 ← get_all_word_nodes_of_community(𝑐);
for each node 𝑣 in 𝑊 𝑉 do

scores.add(calculate_centrality_score(𝑣, PageRank));
end
topN ← find_topN_words(𝑊 𝑉 , scores, N);
communities_topN.add(topN);

nd
/ Step 4
← [];

for each topN in communities_topN do
𝐹 ← unique(𝐹 ∪ 𝑡𝑜𝑝𝑁);

end
return 𝐹 ;

scores produced by the classifier). Despite the fact that the algorithm
assigns only one class to every issue, we can handle this limitation by
examining the probabilities generated for the rest of the classes and
thus inferring how relevant each candidate employee is with a given
issue. In other words, the relevance of each employee with a task can
be quantified as the probability score calculated by the ML classifier
for the corresponding class.

3.3. Comparative assessment

Contrary to the work of Helming et al. (2011) and Jonsson et al.
(2016) which use a statistical approach, namely TF-IDF, we propose
a graph-based approach along with word embeddings to extract the
most significant terms. The statistical approach of the aforementioned
approaches measures the significance of terms across multiple docu-
ments; however, it fails to capture relationships between the candidate
terms in the feature extraction phase. These relationships are captured
by graph-based approaches that rely on co-occurrences such as the
one proposed in this paper. TF-IDF also fails to capture context be-
tween terms, as it does not produce word embeddings, which generally
capture the similarity between terms.

Moreover, compared to the work described in Mo et al. (2020),
where simpler classifiers such as LR, SVM, and NB are used, our
approach utilizes a neural network classifier. This results in an im-
provement in the overall performance, regardless of the selected text
representation. Finally, we further expand the approach presented
in Hassanien and Elragal (2021), which utilizes Word2Vec embeddings
to calculate the similarity between two different tasks. In particular, we
utilize the semantic similarity of our trained Word2Vec embeddings as
a preparatory step, for training our classifier for the task assignment
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Table 1
The attributes of each sample of the dataset.

Attribute Description Values Attribute type

Assignee The name of the
assignee of the issue

e.g. {john_doe,
jane_doe}

String

Description The description of the
issue

unstructured text String

Table 2
Descriptive statistics of each subset of the dataset.

Dataset Number of unique
classes

Number of
samples

Evaluation
results

Dataset 1 3 (most frequent) 37,695 Table 3
Dataset 2 4 (most frequent) 39,259 Table 4
Dataset 3 21 (most frequent) 57,798 Table 5
Dataset 4 300 (all) 228,969 Table 6

process. The utilization of the aforementioned state-of-the-art tech-
niques enables the generation of ML models that are capable of deeply
understanding unstructured textual data, which can be found in project
management systems. We argue that the proposed approach is highly
suitable for the problem of task assignment since it (i) captures complex
relationships between the words of a document, (ii) identifies synonym
terms and words, and (iii) utilizes neural networks, which are essential
for building robust ML models for the analysis of multi-dimensional
textual data.

4. Experimental evaluation

As far as the evaluation of our approach is concerned, the Python
programming language and specifically, the TensorFlow deep learning
library (Abadi et al., 2015) were utilized to build our classification
models. In addition, the initial word embeddings list represents each
word as a one-hot vector. Storing the graph data, as well as the
procedure of enhancing the initial word embeddings was accomplished
through the Neo4j graph database2 using representation learning tech-
iques. The full code of the experiments is freely available on the
itHub repository3 of the paper.

.1. Dataset

The original dataset used for the evaluation of this paper consists
f 168 software projects, including Spark, Hadoop and Airflow. The

information contained to this dataset concerns 228,969 Jira issues,
with every issue incorporating the attributes description and assignee
(see Table 1). The assignee attributes act as the class labels for the
issues of the dataset. The dataset is available on Google Drive4 and was
fetched from the publicly accessible Jira instance of Apache Software
Foundation.5

Concerning the analysis of how each classification model reacts with
respect to the number of samples as well as unique employees (classes),
we created four subsets of the original dataset, where we conducted 10-
fold cross-validation classification experiments. The details (number of
classes, number of samples and evaluation results) for every subset are
provided in Table 2.

2 https://neo4j.com/.
3 https://github.com/imis-lab/personnel-selection.
4 https://drive.google.com/file/d/19PnIT-hJtGk60ntdymo3vsw8o2Qs4Zsn/

iew?usp=sharing.
5 https://issues.apache.org/jira, retrieved at: 20 December 2019.
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4.2. Evaluation metrics

Two well-established metrics, namely accuracy and 𝐹1 score are
used to evaluate our approach. These metrics are defined as follows:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝐹1 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

where TP stands for true positives, TN for true negatives, FP for false
ositives, FN for false negatives predictions of each classification, and
inally precision and recall are defined as follows:

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

pecifically, accuracy calculates the percentage of correct classifica-
ions, whereas 𝐹1 expresses the harmonic mean of the precision and
ecall.

For a more elaborate evaluation of our model, we also calculate the
verage difference between the training and test loss of every neural
etwork, where the sparse categorical cross-entropy was utilized as the
oss function. The fact that this metric remains unaffected from the
rder of the data used to train the classifier is the main benefit of taking
nto consideration such a metric. In particular, sparse categorical cross-
ntropy captures how dissimilar the distribution of the real values of
lass labels is compared to the predicted values of the model, which in
urn indicates whether the given classifier generalizes well or not.

Finally, to examine whether the improvement in the abovemen-
ioned metrics of our approach is statistically significant, we perform a
icro sign test with a p-value = 0.05 for every classifier.

.3. Classification models

In this section, we present the classification models used to evaluate
he proposed approach. We consider the bow_100x50 classifier as our
aseline model, since it is the simplest and the most used model as far
s the task of text classification is concerned.

• bow_100x50: A neural network model with 2 hidden dense layers
with 100 and 50 units, respectively, and a dropout layer of 0.5.
It also utilizes the bag-of-words model as a text representation.
During the training phase, we use 15 epochs, a batch size of 128,
the sparse categorical cross entropy as a loss function, the ReLU
activation function for the 2 hidden layers, the softmax activation
function for the output layer and the Adam optimizer.

• graphsage_{100, 200, 300}: A neural network model with a
trainable embedding layer with 100, 200 or 300 dimensions, a
hidden dense layer with 100 units, a dropout layer of 0.5 and a
global max pooling layer. The initial weights of the embedding
layer have been calculated by running the GraphSAGE algorithm
on the corresponding word similarity graph WSG for 5 epochs.
During the training phase of the neural network, we use 15
epochs, a batch size of 128, the sparse categorical cross entropy as
a loss function, the ReLU activation function for the hidden layer,
the softmax activation function for the output layer and the Adam
optimizer.

• node2vec_{100, 200, 300}: A neural network model with a
trainable embedding layer with 100, 200 or 300 dimensions, a
hidden dense layer with 100 units, a dropout layer of 0.5 and a
global max pooling layer. The initial weights of the embedding
layer have been calculated by running the Node2Vec algorithm
on the corresponding word similarity graph WSG for 5 iterations.
During the training phase of the neural network, we use 15
epochs, a batch size of 128, the sparse categorical cross entropy as
a loss function, the ReLU activation function for the hidden layer,
the softmax activation function for the output layer and the Adam
optimizer.

https://neo4j.com/
https://github.com/imis-lab/personnel-selection
https://drive.google.com/file/d/19PnIT-hJtGk60ntdymo3vsw8o2Qs4Zsn/view?usp=sharing
https://drive.google.com/file/d/19PnIT-hJtGk60ntdymo3vsw8o2Qs4Zsn/view?usp=sharing
https://issues.apache.org/jira
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Table 3
Classification accuracy and F1 score (± standard deviation) of each model on the subset of the dataset concerning the 3 most frequent assignees (Dataset 1). All the models have
statistically significant loss (last column) improvement against the bow_100 × 50 baseline. Bold font indicates the best score value for each column.

Method Accuracy F1 Train loss Validation loss Abs loss difference

bow_100 × 50 95.11(±0.52) 95.11(±0.52) 𝟎.𝟎𝟎𝟐𝟑 0.4029 0.4005
graphsage_100 94.12(±0.46) 94.12(±0.46) 0.0037 0.2767 0.2730
graphsage_200 94.10(±0.48) 94.10(±0.48) 0.0040 0.2839 0.2799
graphsage_300 94.04(±0.46) 94.04(±0.46) 0.0048 0.3040 0.2991
node2vec_100 95.20(±0.32) 95.20(±0.32) 0.0218 𝟎.𝟏𝟐𝟓𝟐 𝟎.𝟏𝟎𝟑𝟒
node2vec_200 95.16(±0.27) 95.16(±0.27) 0.0186 0.1359 0.1173
node2vec_300 𝟗𝟓.𝟐𝟖(±𝟎.𝟐𝟓) 𝟗𝟓.𝟐𝟖(±𝟎.𝟐𝟓) 0.0166 0.1426 0.1260
Table 4
Classification accuracy and F1 score (± standard deviation) of each model on the subset of the dataset concerning the 4 most frequent assignees (Dataset 2). All the models have
statistically significant loss (last column) improvement against the bow_100 × 50 baseline. Bold font indicates the best score value for each column.

Method Accuracy F1 Train loss Validation loss Abs loss difference

bow_100 × 50 94.42(±0.38) 94.42(±0.38) 𝟎.𝟎𝟎𝟑𝟗 0.4487 0.4448
graphsage_100 93.50(±0.44) 93.50(±0.44) 0.0048 0.2788 0.2740
graphsage_200 93.33(±0.36) 93.33(±0.36) 0.0058 0.3028 0.2970
graphsage_300 93.15(±0.37) 93.15(±0.37) 0.0068 0.3233 0.3165
node2vec_100 𝟗𝟒.𝟒𝟗(±𝟎.𝟑𝟐) 𝟗𝟒.𝟒𝟗(±𝟎.𝟑𝟐) 0.0297 𝟎.𝟏𝟒𝟒𝟔 𝟎.𝟏𝟏𝟒𝟗
node2vec_200 94.42(±0.45) 94.42(±0.45) 0.0243 0.1542 0.1299
node2vec_300 94.43(±0.38) 94.43(±0.38) 0.0223 0.1624 0.1402
(
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4.4. Evaluation results

To evaluate our approach, we benchmark the classification models
presented in Section 4.3 against the bow_100x50 classifier on a list of
datasets with different numbers of samples and classes. The obtained
results (Tables 3–6) indicate that classifiers, which are based on embed-
dings produced by the Node2Vec algorithm, are the ones that generally
perform better (concerning accuracy and 𝐹1 metrics), regardless of the
properties of the given dataset. In addition, a statistically significant
improvement in accuracy has been recorded for the majority of the
proposed classifiers on Dataset 4.

It is also observed that the dimension of the embeddings does
not affect significantly the performance of the classifier, since models
relying on the same representation learning algorithm produce similar
results. However, we notice that the dimension of the embeddings
affects the generalization process of the classifier, since all models
have statistically significant loss improvement against the bow_100x500
classifier on each one of the four datasets (see Fig. 2). Moreover, among
all models, node2vec_100 achieves the lowest absolute loss difference on
each dataset. Finally, another aspect that affects the performance of a
classifier is the size and the number of the unique classes of a dataset.
This happens mostly due to the fact that the datasets are not balanced
and, in many cases, there is a limited number of samples for a specific
class, which in turn does not allow a classification model to generalize
easily. This last observation is also noted in Jonsson et al. (2016).

To provide an illustrative evaluation of our approach, we visualize
the embeddings generated from (i) the pooling layer of the proposed
approach, and (ii) the last hidden layer of the baseline model (see
Fig. 3). To do so, we first reduce the dimensions of the embeddings
to 20 using the principal component analysis process; then, we use the
t-SNE tool (Maaten & Hinton, 2008) to visualize the final embeddings in
a two-dimensional space. For the sake of clarity, we only visualize the
embeddings learned from Dataset 2 (Table 4) through the node2vec_100
highest accuracy) and bow_100x50 (baseline) models. As illustrated in
ig. 3, the proposed approach produces embeddings that results in a
etter separation of the documents with respect to the associated class.
n other words, documents with the same label are close to each other
nd the different groups of documents are better separated using the
roposed approach. This explains why the majority of the proposed
odels achieves an improvement in accuracy and 𝐹1 scores.

Considering the above observations, we conclude that the proposed
pproach is more likely to produce efficient classifiers with a better
eneralization process and better document or word embeddings.
8

Fig. 2. Absolute loss difference of the classification models on each subset of the
original dataset concerning the 3 (Dataset 1), 4 (Dataset 2), 21 (Dataset 3) or 300
Dataset 4) most frequent employees.

. Discussion and conclusion

In this paper, we propose a novel approach that exploits techniques
rom various research fields, such as natural language processing, graph
epresentation learning and word embeddings, to assist project man-
gers in making smarter and evidence-based decisions in the personnel
election process. By properly assigning the most qualified personnel to
he appropriate tasks, the chance of success of a project is expected to
ignificantly increase. To this end, our approach estimates a relevance
core between a given task X and an employee Y, by estimating the
robability that the employee Y possess the skills required by task X.

The neural networks developed for the calculation of this probability
reveal hidden knowledge residing in unstructured textual data, which
otherwise would remain untapped. In addition, our approach is domain
agnostic, as it does not require additional information about the tasks
(e.g. keywords that reflect the necessary skills and competences to
perform a given task) or the employees (e.g. one’s curriculum or social
media profile).

For our experiments, we retrieved data from the Jira issue tracking
system of the Apache Foundation, which we enriched with information
from word embeddings. As demonstrated by the evaluation results, the
proposed approach contributes to the increment of the classification
accuracy (compared to a widely-adopted baseline method), which in
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Table 5
Classification accuracy and F1 score (± standard deviation) of each model on the subset of the dataset concerning the 21 most frequent assignees (Dataset 3). All the models have
statistically significant loss (last column) improvement against the bow_100 × 50 baseline. Bold font indicates the best score value for each column.

Method Accuracy F1 Train loss Validation loss Abs loss difference

bow_100 × 50 𝟖𝟕.𝟏𝟏(±𝟎.𝟐𝟖) 𝟖𝟕.𝟏𝟏(±𝟎.𝟐𝟖) 0.0638 0.7501 0.6863
graphsage_100 85.70(±0.48) 85.70(±0.48) 0.0595 0.4885 0.4289
graphsage_200 85.59(±0.53) 85.59(±0.53) 𝟎.𝟎𝟓𝟑𝟕 0.5165 0.4628
graphsage_300 85.27(±0.62) 85.27(±0.62) 0.0565 0.5421 0.4856
node2vec_100 86.95(±0.61) 86.95(±0.61) 0.1607 𝟎.𝟑𝟖𝟓𝟖 𝟎.𝟐𝟐𝟓𝟏
node2vec_200 86.96(±0.54) 86.96(±0.54) 0.1354 0.3874 0.2520
node2vec_300 86.78(±0.30) 86.78(±0.30) 0.1281 0.4000 0.2719
Table 6
Classification accuracy and F1 score (± standard deviation) of each model on the dataset concerning all the available (300) assignees (Dataset 4). * indicates statistical significance
in accuracy improvement against the bow_100 × 50 baseline. All the models have statistically significant loss (last column) improvement against the bow_100 × 50 baseline. Bold
ont indicates the best score value for each column.
Method Accuracy F1 Train loss Validation loss Abs loss difference

bow_100 × 50 50.59(±0.38) 50.59(±0.38) 1.4043 2.5318 1.1275
graphsage_100 51.00(±0.53) 51.00(±0.53) 1.3063 2.0776 0.7714
graphsage_200 50.91(±0.30) ∗ 50.91(±0.30) 𝟏.𝟐𝟗𝟐𝟓 2.0836 0.7912
graphsage_300 50.91(±0.36) ∗ 50.91(±0.36) 1.3114 2.0940 0.7826
node2vec_100 𝟓𝟏.𝟔𝟒(±𝟎.𝟐𝟕) ∗ 𝟓𝟏.𝟔𝟒(±𝟎.𝟐𝟕) 1.5557 𝟐.𝟎𝟐𝟖𝟕 𝟎.𝟒𝟕𝟐𝟗
node2vec_200 51.32(±0.29) ∗ 51.32(±0.29) 1.5184 2.0350 0.5166
node2vec_300 51.25(±0.60) ∗ 51.25(±0.60) 1.5131 2.0429 0.5298
Fig. 3. The t-SNE visualization of the embeddings learned by the proposed approach (left) and the baseline model (right) on Dataset 4.
turn denotes that it is able to calculate the relevance score precisely.
It is also noted that the performance of our approach is not affected
by the majority of the characteristics of the dataset. On the contrary,
it is only affected by the size and the number of the unique classes of
the given dataset, something that occurs as a result of the imbalance
of the dataset and the limited number of samples for specific document
classes.

The examples given in Section 4.4 demonstrate that the proposed
approach produces classification models for predicting the best fit for
each employee. From a practical perspective, our approach enables
project managers to assign employees to tasks without any human bias
and alleviates the need for calculating KPIs or other time-consuming
metrics.

The main contributions of our paper are: (i) we implemented and
evaluated an approach that meaningfully integrates concepts and tech-
niques from the fields of word embeddings, neural networks and graph
mining; (ii) we investigated whether the analysis of textual data is
9

able to assist in the personnel selection process; (iii) we proposed a
novel ML-based pipeline that assists project managers in the personnel
selection process; (iv) we provided the research community with a rich
dataset containing tasks of the projects of an organization that can be
utilized as a baseline in similar research directions.

A list of remarks has been collected during the analysis of the
evaluation results, which can be summarized as follows: (i) the uti-
lized technologies (i.e. word embeddings, neural networks and graph
representation learning) can be used for efficiently analyzing textual
data related to personnel selection; (ii) the combination of the afore-
mentioned technologies advances the document classification process
and assists in producing well-generalized models; (iii) the utilization of
graph-based text representations is essential for capturing relationships
between the words of a document; (iv) graph representation learning
techniques produce better word embeddings as far as the task of
identifying synonym words is concerned; (v) neural networks are of
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great value when dealing with the analysis of high-dimensional textual
data.

Aiming to further advance the performance of our approach, fu-
ture work will focus on improving its classification phase through
graph mining techniques such as node classification with graph neural
networks and graph attention networks (Veličković et al., 2018). We
also plan to further enrich the initial graph-of-docs representation by
introducing new edge types among ‘issue’ nodes (e.g. ‘dependencies’,
‘priorities’ etc.). Another future work direction is to expand the proposed
pipeline with an additional phase that utilizes techniques from the field
of operations research; this will allow the inclusion of constraints and
optimization rules, enabling an organization to optimize the allocation
of tasks to the available employees (Gaspars-Wieloch, 2021; Kanakaris,
Karacapilidis, & Kournetas, 2020).
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